Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.080
Filter
1.
J. coloproctol. (Rio J., Impr.) ; 43(4): 267-270, Oct.-Dec. 2023. tab, graf
Article in English | LILACS | ID: biblio-1528935

ABSTRACT

Introduction: Cancer is a disease that emerges as a result of abnormal cell proliferation and their propensity to spread from one bodily region to another. There are over a hundred different types of cancer that impact individuals all over the world. It is difficult to identify in the early stages, but there are certain warning signals that the cells will turn malignant. Quality of life (QOL) is described by the World Health Organisation as "individuals' perception of life, values, objectives, standards, and interests within the cultural framework of the social environment in which they live and in relation to their goals, expectations, standards, and concerns." QOL assessment in health system is a multidimensional construct that can be measured by evaluating objective levels of health status filtered by the subjective perceptions and expectations of the individual. Aim and Objective: To assess socio-demographic factors and quality of life among cancer patients in tertiary care hospital. Materials and Methods: A hospital-based prospective observational study was conducted at Guru Gobind Singh Medical College and Hospital Faridkot district, Punjab (India). The study was conducted for a period of six months after getting approval from Institutional Ethical Committee (IEC). Generic instrument, SF-36 was used to assess the QOL. The study was analyzed on SPSS version 26.0 software. Descriptive and analytical analysis was used to describe the results. Results: Linear regression was conducted to see the relationship of physical functioning score with age and weight of the patients. The descriptive statistics shows the mean and standard deviation of the variable. The mean of physical functioning score was found to be (M = 27.82, SD = 15.635). The physical functioning score and age, weight of the patients in linear regression shows that the age and weight explain 17.5% Conclusion: Treatment revealed that severe and moderate activities restricted nearly half of the assessed patients, with body pain interfering with employment and routine activities. According to the findings of the current study, QOL deteriorates as the disease progresses. Cancer unquestionably has a detrimental influence on patients' quality of life, which is connected to the illness process itself, the therapy administered, and the length of the disease. (AU)


Subject(s)
Humans , Adult , Middle Aged , Aged , Aged, 80 and over , Quality of Life , Surveys and Questionnaires , Health Profile , Neoplasms
2.
Gac. méd. Méx ; 159(5): 390-397, sep.-oct. 2023. graf
Article in Spanish | LILACS-Express | LILACS | ID: biblio-1534466

ABSTRACT

Resumen Antecedentes: La aparición temprana de serotonina en el cerebro fetal y sus efectos en la morfogénesis cerebral apoyan su papel neurotrófico. Objetivo: Determinar la presencia de células serotoninérgicas y la expresión de triptófano-5-hidroxilasa (TPH), 5-hidroxitriptamina (5-HT), transportador de serotonina (SERT), receptor 5-HT1A y Pet-1 durante el desarrollo de la corteza cerebral, tanto in situ como en cultivo de tejidos. Material y métodos: Se realizó estudio observacional descriptivo en ratas Wistar preñadas. La presencia del tapón se consideró el inicio de la gestación; en los días 13, 16 y 17 se practicaron cesáreas para obtener los fetos e inmediatamente se disecaron los cerebros para identificar células serotoninérgicas, TPH, 5-HT, SERT, 5-HT1A y Pet-1 en cultivo de tejido e in situ mediante inmunomarcaje detectado en un microscopio confocal. Resultados: Células y terminales serotoninérgicas fueron observadas en el mesencéfalo el día 17 de gestación y en cocultivos de neopalio los días 13 y 16. También se observaron células inmunopositivas a TPH, 5-HT, SERT y Pet-1 en el neopalio en el día 12 del cultivo. Conclusiones: Se confirmó la presencia de células serotoninérgicas y otros elementos del sistema serotoninérgico en la corteza cerebral temprana, la cual puede ser transitoria y participar en los procesos de maduración cortical durante el desarrollo cerebral.


Abstract Background: Early appearance of serotonin in the fetal brain and its effects on brain morphogenesis support its neurotrophic role. Objective: To determine the presence of serotonergic cells and the expression of tryptophan-5-hydroxylase (TPH), 5-hydroxytryptamine (5-HT), serotonin transporter (SERT), 5-HT1A receptor and Pet-1 during the development of the cerebral cortex, both in situ and in tissue cultures. Material and methods: A descriptive, observational study was carried out in pregnant Wistar rats. The presence of the plug was regarded as the beginning of gestation. On days 13, 16 and 17, cesarean sections were performed to obtain the fetuses, and the brains were then immediately dissected to identify the presence of serotonergic cells, TPH, 5-HT, SERT, 5-HT1A and Pet-1 in tissue cultures and in situ by immunostaining detected on a confocal microscope. Results: Serotonergic cells and terminals were observed in the midbrain on day 17 of gestation, and in neopallium cocultures on days 13 and 16. TPH, 5-HT, SERT and Pet-1 immunopositive cells were also observed in the neopallium on day 12 of culture. Conclusions: The presence of serotonergic cells and other elements of the serotonergic system in the early cerebral cortex was confirmed, which may be transient and participate in cortical maturation processes during brain development.

3.
Int. j. morphol ; 41(4): 996-1002, ago. 2023. ilus, tab
Article in English | LILACS | ID: biblio-1514365

ABSTRACT

SUMMARY: Many students regard neuroanatomy as a terrifying subject due to the complicated neuronal connections. Purpose of this research was to promote the easy and logical learning of neuroanatomy by systematizing a rule "three neurons of afferent nerves." The rule, in which the second neuron decussates and reaches the thalamus, was applied to as many structures as possible. The three neurons are drawn in a constant pattern to intuitively demonstrate the rule. The rule could be applied not only to the spinothalamic tract, medial lemniscus pathway, sensory cranial nerves (visual pathway, trigeminothalamic tract, taste pathway, and auditory pathway) and ascending reticular activating system, but also to the pontocerebellum (afferent to cerebrum), basal nuclei (direct pathway), and limbic system (medial limbic circuit). Exceptionally, some afferent nerves do not exactly follow the suggested rule. This simple rule, which corresponds to many pathways of the neuroanatomy, is expected to make the learning by novice students easier.


Muchos estudiantes consideran la neuroanatomía como un tema aterrador debido a las complicadas conexiones neuronales. El propósito de esta investigación fue promover el aprendizaje fácil y lógico de la neuroanatomía mediante la sistematización de una regla "tres neuronas de los nervios aferentes". La regla, en la que la segunda neurona se decusa y llega al tálamo, se aplicó a todas las estructuras cuando esto fue posible. Las tres neuronas se dibujan en un patrón constante para demostrar la regla intuitivamente. La regla podría aplicarse no solo al tracto espinotalámico, la vía del lemnisco medial, los nervios craneales sensoriales (vía visual, tracto trigeminotalámico, vía gustativa y vía auditiva) y el sistema de activación reticular ascendente, sino también al pontocerebelo (aferente al cerebro), núcleos basales (vía directa) y sistema límbico (circuito límbico medial). Excepcionalmente, algunos nervios aferentes no siguen exactamente la regla sugerida. Se espera que esta simple regla, que corresponde a muchas vías de la neuroanatomía, facilite el aprendizaje de los estudiantes principiantes.


Subject(s)
Humans , Neuroanatomy/education , Neurons, Afferent , Education, Medical, Undergraduate , Learning
4.
European J Med Plants ; 2023 Feb; 34(2): 1-12
Article | IMSEAR | ID: sea-219534

ABSTRACT

Aims: To primary rat embryonic hippocampal neurons in culture, ashwagandha or one of its active ingredients, withanolide A were added in the presence or absence of nutrient supplementation and then assayed for activity of the BDNF receptor, TrkB. Study Design: Primary hippocampal neurons were cultured and grown in nutrient-rich or nutrient-poor medium. Ashwagandha or withanolide A were then be added to both types of media with or without an inhibitor of TrkB or either the PI-3K or MAPK pathway. Place and Duration of Study: Department of Biological Sciences, California State University, Los Angeles, CA, USA, between July 2021 and August 2022. Methodology: Rat embryos were removed by cesarean section from mother rats at 18 days’ gestation and the hippocampi of the former dissected, plated into culture dishes, and treated with the appropriate drug(s) (see Study Design above). After 4 days, neurons were harvested for Western blotting. Optical density of Western blot bands were quantified and statistically analyzed in a 2-way ANOVA, using a level of statistical significance at P < .05. Results: Under normal conditions (with N2 supplement), ashwagandha, but not withanolide A, increased phospho-TrkB immunoreactivity when compared to the effects of vehicle (controls, F(11, 24) = 22.48, P < .001), although withanolide A did not quite reach statistical significance (P = .069) when compared to that of the controlled condition. Likewise, under nutrient-deprived conditions, both ashwagandha and withanolide A also increased phosphorylation of TrkB when compared to that of vehicle-nutrient-deprived conditions (P < .0001). The same results were obtained in the presence of inhibitors of TrkB itself and the PI-3K (ashwagandha, P < .001; withanolide A, P < .001) and MAPK (ashwagandha, P = .027; withanolide A, P = .045) pathways. Conclusion: Ashwagandha or withanolide A activates TrkB, in nutrient-deprived hippocampal neurons, underscoring its role in neuronal survival signaling.

5.
Rev. bras. cir. cardiovasc ; 38(1): 29-36, Jan.-Feb. 2023. tab, graf
Article in English | LILACS-Express | LILACS | ID: biblio-1423096

ABSTRACT

ABSTRACT Introduction: Paraplegia may develop as a result of spinal cord ischemia-reperfusion injury in patients who underwent thoracoabdominal aortic surgery. The objective of this research is to determine the neuroprotective effects of ginsenoside Rd pretreatment in a rat model of spinal cord ischemia-reperfusion injury. Methods: Sprague-Dawley rats (n=36) were randomly assigned to three groups. The sham (n=12) and control (n=12) groups received normal saline orally. The Rd group (n=12) received ginsenoside Rd (100 mg/kg) orally 48 hours before the induction of spinal cord ischemia. Spinal cord ischemia was induced by aortic occlusion using a Fogarty balloon catheter in the Rd and control groups. A neurological assessment according to the motor deficit index and a histological evaluation of the spinal cord were performed. To evaluate the antioxidant activity of ginsenoside Rd, malondialdehyde levels and superoxide dismutase activity were determined. Further, the tissue levels of tumor necrosis factor-alpha and interleukin-1 beta were measured. Results: The Rd group showed significantly lower motor deficit index scores than did the control group throughout the entire experimental period (P<0.001). The Rd group demonstrated significantly greater numbers of normal motor neurons than did the control group (P=0.039). The Rd group exhibited decreased malondialdehyde levels (P<0.001) and increased superoxide dismutase activity (P=0.029) compared to the control group. Tumor necrosis factor-alpha and interleukin-1 beta tissue levels were significantly decreased in the Rd group (P<0.001). Conclusion: Ginsenoside Rd pretreatment may be a promising treatment to prevent ischemia-reperfusion injury in patients who undergo thoracoabdominal aortic surgery.

6.
Arq. ciências saúde UNIPAR ; 27(7): 3604-3623, 2023.
Article in Portuguese | LILACS-Express | LILACS | ID: biblio-1442983

ABSTRACT

O diabetes mellitus tipo I é resultado da absoluta deficiência de insulina, estando associado à anormalidades no metabolismo. Transtornos no trato gastrointestinal, tais como vômitos, disfagia e diarreia são frequentes no diabetes, sendo relacionados a alterações na morfologia intestinal e no sistema nervoso entérico. Compostos ricos em antioxidantes vem sendo utilizados como prevenção ou tratamento do diabetes. Agaricus blazei Murrill possui grande interesse farmacológico pelas propriedades anti-inflamató- rias, hipoglicêmicas e antioxidantes. Neste trabalho, avaliamos a integridade estrutural da parede e inervação intrínseca do cólon proximal em modelo experimental de diabetes induzido por estreptozotocina, tratados ou não com A. blazei. Ratos Wistar foram dividi- dos em grupos: normoglicêmicos (N), diabéticos (D) e com suplementação (NB e DB) por gavagem do extrato hidroalcoólico de Agaricus blazei (200mg/Kg), por 120 dias. Amostras do cólon proximal foram destinadas à técnicas histológicas para análise mor- fométrica da túnica mucosa, profundidade das criptas, muscular da mucosa, muscular ex- terna e parede total, número de células caliciformes e avaliação morfoquantitativa da pop- ulação mioentérica. O diabetes promoveu redução da muscular externa e muscular da mucosa com aumento na profundidade das criptas e área nuclear neuronal. O extrato promoveu hipertrofia da mucosa e muscular da mucosa. Houve manutenção na espessura da parede total, número de células caliciformes e na população neuronal mioentérica no diabetes e na suplementação. Conclui-se que o diabetes induzido por estreptozotocina e a suplementação com o extrato de Agaricus blazei causam ajustes morfológicos nas túnicas intestinais, sem interferir na parede e inervação mioentérica do cólon proximal, preservando a morfofisiologia absortiva e motora deste segmento


Type I diabetes mellitus is a result of absolute insulin deficiency and is associated with abnormalities in metabolism. Disorders in the gastrointestinal tract, such as vomiting, dysphagia and diarrhea are common in diabetes, being related to changes in intestinal morphology and enteric nervous system. Antioxidant rich compounds have been used as prevention or treatment of diabetes. Agaricus blazei Murrill is highly pharmacologically interested in anti-inflammatory, hypoglycemic and antioxidant properties. In this work, we evaluated the structural integrity of the wall and intrinsic innervation of the proximal colon in an experimental model of streptozotocin-induced diabetes, treated or not with A. blazei Wistar rats were divided into groups: normoglycemic (N), diabetic (D) and supplementation (NB and DB) by gavage of the hydroalcoholic extract of Agaricus blazei (200mg / kg) for 120 days. Samples of the proximal colon were used for histological techniques for morphometric analysis of the mucosa, depth of the crypts, muscularis mucosa, external muscular and total wall, number of goblet cells and morpho-quantitative evaluation of the myenteric population. Diabetes promoted reduction of muscularis mucosa and external muscular with increased depth of the crypts and nuclear neuronal area. The extract promoted mucosa and muscular of the mucosa hypertrophy. There were maintenance of total wall thickness, number of goblet cells and in the myenteric neuronal population in diabetes and supplementation. It is concluded that streptozotocin-induced diabetes and supplementation with Agaricus blazei extract cause morphological adjustments in the intestinal tunica, without interfering with the wall and myenteric innervation of the proximal colon, preserving the absorptive and motor morphophysiology of this segment.


La diabetes mellitus tipo I es el resultado de la deficiencia absoluta de insulina y se asocia con anomalías en el metabolismo. Los trastornos del tracto gastrointestinal, como vómitos, disfagia y diarrea son frecuentes en la diabetes, estando relacionados con cambios en la morfología intestinal y en el sistema nervioso entérico. Los compuestos ricos en antioxidantes se han utilizado como prevención o tratamiento de la diabetes. Agaricus blazei Murrill está muy interesado farmacológicamente en propiedades antiinflamatorias, hipoglucémicas y antioxidantes. En este trabajo, se evaluó la integridad estructural de la pared e inervación intrínseca del colon proximal en un modelo experimental de diabetes inducida por estreptozotocina, tratada o no con ratas A. blazei Wistar, divididas en grupos: normoglucémico (N), diabético (D) y suplementación (NB y DB) por sonda del extracto hidroalcohólico de Agaricus blazei (200mg/kg) por 120 días. Se utilizaron muestras del colon proximal para técnicas histológicas de análisis morfométrico de la mucosa, profundidad de las criptas, mucosa muscular, pared externa muscular y total, número de células caliciformes y evaluación morfo-cuantitativa de la población mientérica. La diabetes promovió la reducción de la muscular de la mucosa y de la muscular externa con el aumento de la profundidad de las criptas y del área neuronal nuclear. El extracto promovió la hipertrofia mucosa y muscular de la mucosa. Hubo mantenimiento del espesor total de la pared, número de células caliciformes y en la población neuronal mientérica en diabetes y suplementación. Se concluye que la diabetes inducida por estreptozotocina y la suplementación con extracto de Agaricus blazei causan ajustes morfológicos en la túnica intestinal, sin interferir con la pared e inervación mientérica del colon proximal, conservando la morfofisiología absortiva y motora de este segmento.

7.
Neuroscience Bulletin ; (6): 245-260, 2023.
Article in English | WPRIM | ID: wpr-971567

ABSTRACT

Defensive behaviors induced by innate fear or Pavlovian fear conditioning are crucial for animals to avoid threats and ensure survival. The zona incerta (ZI) has been demonstrated to play important roles in fear learning and fear memory, as well as modulating auditory-induced innate defensive behavior. However, whether the neuronal subtypes in the ZI and specific circuits can mediate the innate fear response is largely unknown. Here, we found that somatostatin (SST)-positive neurons in the rostral ZI of mice were activated by a visual innate fear stimulus. Optogenetic inhibition of SST-positive neurons in the rostral ZI resulted in reduced flight responses to an overhead looming stimulus. Optogenetic activation of SST-positive neurons in the rostral ZI induced fear-like defensive behavior including increased immobility and bradycardia. In addition, we demonstrated that manipulation of the GABAergic projections from SST-positive neurons in the rostral ZI to the downstream nucleus reuniens (Re) mediated fear-like defensive behavior. Retrograde trans-synaptic tracing also revealed looming stimulus-activated neurons in the superior colliculus (SC) that projected to the Re-projecting SST-positive neurons in the rostral ZI (SC-ZIrSST-Re pathway). Together, our study elucidates the function of SST-positive neurons in the rostral ZI and the SC-ZIrSST-Re tri-synaptic circuit in mediating the innate fear response.


Subject(s)
Mice , Animals , Zona Incerta/metabolism , Neurons/metabolism , Fear/physiology , Somatostatin/metabolism
8.
Journal of Traditional Chinese Medicine ; (12): 1777-1785, 2023.
Article in Chinese | WPRIM | ID: wpr-984531

ABSTRACT

ObjectiveTo observe the clinical efficacy of the Modified Tongmai Anshen Formula (通脉安神方加减, MTAF) in the treatment of stable angina pectoris (SAP) with sleep disorders. MethodsA total of 148 patients suffering from SAP with sleep disorder were included and randomly divided into control group and treatment group, with 74 patients in each group. The control group received conventional western medicine, and the treatment group additionally received MTAF (1 dose per day), both for 4 weeks. The changes in angina pectoris symptoms, traditional Chinese medicine (TCM) syndromes, sleep quality, quality of life, serological indicators including serum intercellular adhesion molecule-1 (ICAM-1) and vascular cell adhesion molecule-1 (VCAM-1), brain-derived nerve growth factor (BDNF) and tyrosine kinase receptor B (TrkB) were compared between groups before and after treatment, and the safety was evaluated. ResultsIn the treatment group and the control group, the total effective rates of TCM syndromes(82.43% vs 52.70%), angina pectoris (79.73% vs 64.86%) and sleep (89.19% vs 68.92%) showing significant difference (P<0.001). After treatment, the total TCM syndrome score, primary symptom score, secondary symptom score, and secondary symptoms sleeplessness, restlessness, tiredness and fatigue individual score, angina pectoris score, PSQI total score and each item score were all significantly reduced in both groups, while the SF-36 single item score significantly increased (P<0.05). The total TCM syndromes and primary symptom scores, secon-dary symptoms sleeplessness, restlessness, tiredness and fatigue individual score, angina pectoris score, time to fall asleep, sleep quality, hypnotic medication, sleep disturbance, daytime dysfunction score and PSQI total score were significantly lower in the treatment group than those in the control group after treatment (P<0.05), while the somatic pain, general health status, social functioning, emotional functioning, mental health, and health change were significantly higher in the treatment group (P<0.05). After treatment, ICAM-1 and VCAM-1 level significantly decreased (P<0.05), and BDNF and TrkB levels increased (P<0.05) in the treatment group, while BDNF level significantly decreased in the control group (P<0.05). The TrkB level was significantly higher in the treatment group compared to the control group after treatment (P<0.05). A total of four adverse events occurred during the treatment, none of which were considered to be related to this study. ConclusionMTAF can significantly improve angina pectoris symptoms, TCM syndromes, sleep quality and quality of life in patients suffering from SAP with sleep disorders, the mechanism of which may be related to the protection of vascular endothelial function and central neurons.

9.
Chinese Journal of Pharmacology and Toxicology ; (6): 551-552, 2023.
Article in Chinese | WPRIM | ID: wpr-992221

ABSTRACT

OBJECTIVE Fear can be learned indi-rectly,but excessive transmission of fear is essential for the development of mental illness.Previous research has indicated that the anterior insular cortex(AIC)may play a crucial role in the process of fear transmission,and abnormal AIC activity is a possible mechanism under-lying various affective disorders.Inhibitory neurons are crucial for maintaining local microcircuit homeostasis.With the support of novel specific neuroregulatory tech-niques,it is now possible to monitor and regulate differ-ent types of neurons in real-time.Therefore,investigating distinct subtypes of inhibitory neurons in the AIC that are involved in fear contagion may provide valuable insights into potential mechanisms underlying mental disorders.METHODS We established a modified observational fear(OF)model.A demonstrator(DM)mouse was placed in an acrylic cup at the center of the apparatus,and two observer(OB)mice were allowed to explore the DM mouse simultaneously from separate areas on either side.During the OF training,electric foot shocks were administered to the DM mouse and freezing,the side and corner time,and social interaction behavior were scored.Next,we characterized the activity patterns of distinct neuronal subtypes in the AIC using GCaMP-based calcium recording.Finally,we employed a Cre-dependent optogenetic approach to selectively modulate excitatory or inhibitory neurons in the AIC,and investigat-ed empathic fear behavior across different Cre transgenic mouse lines(CK2-Cre,PV-Cre,SOM-Cre,VIP-Cre).RESULTS During the training phase,the OB mice exhib-ited significantly higher levels of fear compared to the control group(which did not observe a traumatic event),as evidenced by increased freezing time,decreased interaction time,and increased corner zone time.Calcium fiber recording results suggested that CK2 neurons are involved in risk prediction,while PV and VIP neurons exert inhibitory control on this behavior.Optogenetic silencing of CK2-positive neurons in the AIC through injection of AAV-DIO-NpHR-mCherry in mice demon-strated a significant reduction in empathic fear.Similarly,activation of PV or VIP inhibitory neurons expressing ChR2-eYFP also resulted in a similar effect.However,activation of SOM neurons led to a significant increase in empathic fear.CONCLUSION Our study demonstrated that VIP and PV neuron activity in the AIC attenuates empathetic fear,while SOM and CK2 neuron activity enhances fear expression.These findings shed light on the distinct contributions of various inhibitory interneu-rons in the AIC to fear contagion,indicating their mutual interaction for maintaining local microcircuit homeostasis that regulates empathetic fear behaviors.

10.
Chinese Journal of Pharmacology and Toxicology ; (6): 548-549, 2023.
Article in Chinese | WPRIM | ID: wpr-992219

ABSTRACT

OBJECTIVE Histamine is a conserved neuromodulator in mammalian brains and critically involved in many physiological functions.Understanding the precise structure of histaminergic network is the cor-nerstone in elucidating its function.METHODS Herein,using novel HDC-CreERT2 mice and genetic labeling strategies,we reconstructed a whole brain 3D structure of histaminergic neurons and their outputs at 0.32×0.32×2 μm3 pixel resolution with a cutting-edge fluorescence micro-optical sectioning tomography system(fMOST).And we dissect an appetite control circuit originating from the TMN to medial septal nucleus(MS)using fiber photometry,optogenetics,and chemogenetics interfer-ence.RESULTS We quantified the fluorescence density of all brain areas and found that histaminergic fiber density varied significantly among brain regions.The density of histaminergic fiber was positively correlated with the amount of histamine release induced by optogenetic stim-ulation or physiological aversive stimulation.Moreover,we reconstructed fine morphological structure of 60 hista-minergic neurons via sparse labeling,and uncovered the largely heterogeneous projection pattern of individual his-taminergic neuron.Lastly,we found that MS-projecting histaminergic circuit is functionally inhibited during food consumption,and bidirectionally modulates feeding behavior via downstream H2,but not H1,receptors on MS glutamatergic neurons.CONCLUSION Collectively,this study reveals an unprecedented whole-brain quanti-tative analysis of histaminergic projections at the meso-scopic level,providing a foundation for future functional histaminergic study.And we also demonstrate that this MS-projecting histaminergic circuit is critically involved in feeding,and H2Rs in MS glutamatergic neurons is a promising target for treating body weight problems.

11.
Chinese Journal of Pharmacology and Toxicology ; (6): 535-536, 2023.
Article in Chinese | WPRIM | ID: wpr-992212

ABSTRACT

OBJECTIVE Cannabinoids modulate do-pamine(DA)transmission and DA-related behavior,which has been thought to be mediated initially by acti-vation of cannabinoid CB1 receptors(CB1Rs)on GABA neurons.However,the cellular and receptor mechanisms underlying cannabinoids' psychoactive effects are not fully understood.The present study is to explore the pos-sible expression character of CB1Rs and elucidated the underlying mechanism of them.METHODS We took advantage of RNAscope in situ hybridization(ISH)assays and triple-staining assays to detect the CB1R-expressing neurons.We established an optical intracranial self-stimulation(OICSS)behavioral model by using opto-genetics to study dopaminergic reinforcement function.Natural and synthetic cannabinoids were used to study the function of CB1Rs.Conditional genetic depletion of CB1Rs and behavioral assay were performed to study the modulatory role of CB1Rs in DA-related behaviors.RESULTS We found that CB1Rs are also expressed in a subset of DA neurons and functionally underlie cannabi-noid action in male and female mice.ISH assays demon-strated CB1 mRNA in tyrosine hydroxylase(TH)-posi-tive DA neurons in the ventral tegmental area(VTA)and glutamate decarboxylase 1(GAD1)-positive GABA neu-rons.The CB1R expressing DA neurons were located mainly in the middle portion of the VTA with the number of CB1-TH colocalization progressively decreasing from the medial to the lateral VTA.Triple-staining assays indi-cated CB1R mRNA colocalization with both TH and vesicular glutamate transporter 2(VgluT2,a glutamate neuronal marker)in the medial VTA close to the midline of the brain.Optogenetic activation of this population of DA neurons was rewarding as assessed by OICSS.D9-tetrahydrocannabinol(D9-THC)or ACEA(a selective CB1R agonist)dose-dependently inhibited optical intra-cranial self-stimulation in DAT-Cre control mice,but not in conditional knockout mice with the CB1R gene absent in DA neurons.In addition,deletion of CB1Rs from DA neurons attenuated D9-THC-induced reduction in DA release in the NAc,locomotion,and anxiety.CONCLU-SION Our results indicated that CB1Rs are expressed in a subset of DA neurons that corelease DA and gluta-mate,and functionally underlie cannabinoid modulation of DA release and DA-related behavior.

12.
Chinese Journal of Pharmacology and Toxicology ; (6): 527-528, 2023.
Article in Chinese | WPRIM | ID: wpr-992209

ABSTRACT

OBJECTIVE There are serious hazards in depression,and the precise mechanism underlying the delayed onset of clinical antidepressants remains unclear.The purpose of this study was to investigate the regular pattern of the speed-limiting role of excitation/inhibition(E/I)function balance in the mechanism of antidepressant action.METHODS Based on the previous study,we focused on glutamatergic pyramidal neurons in the medial prefrontal cortex(mPFC)here and used its excitability to represent the establishment of a new E/I functional balance.We studied the changes in the firing activity of glutamatergic pyramidal neuron in the mPFC at different administration times for five types of antidepressants that act on different pharmacological targets and different onset times,including fluoxetine(SSRI),duloxetine(SNRI),vilazodone[serotonin 1A receptor(5-HT1A)ago-nist and SSRI],ketamine[N-methyl-D-aspartate(NMDA)receptor antagonist],and hypidone hydrochloride(YL-0919,new antidepressant with sigma-1 receptor ago-nist and SSRI).We first examined the initial onset time of activation of pyramidal neurons using multichannel elec-trophysiological recordings and tested the antidepressant behavioral effects using the FST.We then selected three antidepressants(fluoxetine,ketamine,and vilazodone)to explore its effects on the BDNF-mTOR pathway by West-ern blotting.In addition,we disrupted the E/I function bal-ance using chemogenetics to investigate the antidepres-sant-like effects of YL-0919 and ketamine in the FST and TST.RESULTS We found that treatment with fluoxetine for 17 days significantly increased the firing activity of pyramidal neurons and decreased the immobility duration in the FST.Similarly,it took duloxetine for 10 d,vilazodone for 4 d,YL-0919 for 3 d and ketamine for 24 h,to exert such effects.Meanwhile,Western blotting results sug-gested that the expression of BDNF and phosphorylation of mTOR in the mPFC significantly increased.How-ever,haloperidol,a classic antipsychotic(without antide-pressant effects),exerted no such effects on the firing activities of pyramidal neurons.In addition,disrupting the E/I function balance(via activating the GABA neurons and inhibiting the glutamate neurons)blocks out the antidepressant-like effects of YL-0919 and ketamine in the FST and TST.CONCLUSION Taken together,our findings suggest that the commencement of antide-pressant effects may be accompanied by the increase in the firing activity of pyramidal neurons and the activation of the BDNF-mTOR pathway,which may be a necessary and rate-limiting process.The re-establishment of the E/I balance may be a landmark event for the onset of antide-pressant effects.

13.
Chinese Journal of Pharmacology and Toxicology ; (6): 485-486, 2023.
Article in Chinese | WPRIM | ID: wpr-992171

ABSTRACT

OBJECTIVE To reveal the role of the basal forebrain(BF)GABAergic neurons in the regulation of isoflurane anesthesia and to elucidate the underlying neural pathways.METHODS The activity of BF GABAer-gic neurons was monitored during isoflurane anesthesia using a genetically encoded calcium indicator in Vgat-Cre mice of both sexes.The activity of BF GABAer-gic neurons was manipulated by chemogenetic and opto-genetic approaches.Sensitivity,induction time and emer-gence time of isoflurane anesthesia were estimated by righting reflex.The electroencephalogram(EEG)power and burst-suppression were monitored by EEG recording.The effects of activation of GABAergic BF-thalamic reticu-lar nucleus(TRN)pathway on isoflurane anesthesia were investigated with optogenetics.RESULTS The activity of BF GABAergic neurons was generally inhibited during isoflurane anesthesia,obviously decreased during the induction of anesthesia and gradually restored during the emergence from anesthesia.Activation of BF GABAergic neurons with chemogenetics and optogenetics promoted behavioral emergence from isoflurane anesthesia,with decreased sensitivity to isoflurane,delayed induction and accelerated emergence from isoflurane anesthesia.Optogenetic activation of BF GABAergic neurons prom-oted cortical activity during isoflurane anesthesia,with decreased EEG delta power and burst suppression ratio during 0.8%and 1.4%isoflurane anesthesia,respectively.Similar to the effects of activating BF GABAergic cell bod-ies,photostimulation of BF GABAergic terminals in the TRN also strongly promoted cortical activation and behav-ioral emergence from isoflurane anesthesia.CONCLU-SION The GABAergic neurons in the BF is a key neural substrate for general anesthesia regulation that facilitates behavioral and cortical emergence from general anesthe-sia via the BF-TRN pathway.

14.
Chinese Journal of Pharmacology and Toxicology ; (6): 482-483, 2023.
Article in Chinese | WPRIM | ID: wpr-992168

ABSTRACT

OBJECTIVE Cognitive deficit is a com-mon comorbidity in temporal lobe epilepsy(TLE)and that is not well controlled by current therapeutics.Currently,how epileptic seizure affects cognitive performance remains largely unclear.The subiculum is the major out-put of the hippocampus,which projects to entorhinal cor-tex and other more distinct brain regions.Physiologically,the subiculum codes spatial working memory and naviga-tion information including place,speed,and trajectory.Importantly,prior studies have noted the importance of the subiculum in the beginning,spreading,and generaliz-ing process of hippocampal seizure.How seizure-activated neurons in subiculum participate in cognitive impairment remains largely elusive.METHODS In this study,we sought to label the subicular seizure-activated c-fos+ neu-rons with a special promoter with enhanced synaptic activity-responsive element E-SARE in the subiculum,combined with chemogenetics and designer receptors exclusively activated by designer drugs(DREADDs),Ca2+ fiber photometry approaches,and behavioral tasks,to reveal the role of these neurons in cognitive impairment in epilepsy.RESULTS We found that chemogenetic inhibi-tion of subicular seizure-tagged c-fos+ neurons(mainly CaMK Ⅱ α+ glutamatergic neurons)alleviates seizure generalization and improves cognitive performance in the hippocampal CA3 kindling TLE model.While inhibition of seizure-labeled c-fos+ GABAergic interneuron shows no effect on seizure and cognition.As a comparison,che-mogenetic inhibition of the whole subicular CaMK Ⅱ α+ neuron impairs cognitive function in na?ve mice in basal condition.Notably,inhibition of subicular seizure-tagged c-fos+ neurons enhances the recruitment of cognition-responsive c-fos+ neurons via increasing neural excitability during cognition tasks.CONCLUSION Our results dem-onstrate that subicular seizure-activated c-fos+ neurons contribute to cognitive impairment in TLE,suggesting sei-zure-tagged c-fos+ neurons as the potential therapeutic target to alleviate cognitive impairment in TLE.

15.
Chinese Journal of Behavioral Medicine and Brain Science ; (12): 680-687, 2023.
Article in Chinese | WPRIM | ID: wpr-992152

ABSTRACT

Objective:To investigate the effects of thermobaric charge explosion simulated gas on long-term neurobehavior and hippocampal neurogenesis in rats.Methods:A total of 48 male SPF grade SD rats aged 8-10 weeks were randomly divided into control group, 5 min exposure group, 10 min exposure group and 15 min exposure group, with 12 rats in each group. Twenty-eight days after inhalation of infection, the anxiety-like behavior of rats was evaluated by an elevated cross maze, and the learning and memory function of rats was evaluated by two-way active avoidance experiment. The number of positive cells of rat hippocampal dentate gyrus neural stem cells marker molecule neural epithelial cell protein (SOX2) and mature neuron marker molecular neuronal nuclei (NeuN) was detected by immunofluorescence staining. Western blot was used to detect SOX2 and NeuN protein expression in the hippocampal tissues of rats. GraphPad prism 8.0 software was used for data analysis.The comparison of repeated measurement design data was carried out by repeated measurement ANOVA.One-way ANOVA was used for inter group comparisons, and Tukey test was used for pairwise comparison. Hippocampal nerve cells were counted using the Image J software.Results:(1) The experimental results of the elevated cross maze showed that the percentage of arm opening and the percentage of open arm residence time in each group had significant group effects ( F=22.31, 5.43, all P<0.05). The percentage of open arm entry times of rats in the 5 min, 10 min and 15 min exposure group ((28.85±1.47)%, (15.04±4.69)%, (12.66±2.89)%) and the percentage of residence time in open arm ((12.12±2.64)%, (12.16±1.11)%, (8.73±3.52)%) were all lower than those of the control group ((65.40±1.86)%, (42.92±3.12)%) (all P<0.05). There were no statistically significant differences in pairwise comparison among the three exposure groups (all P>0.05). (2)During the memory acquisition period, the results of repeated-ANOVA showed that the time main effect ( F=56.46), the group main effect ( F=16.64) and the interaction effect had significant differences( F=4.21)(all P<0. 05). The difference values of active avoidance number between the 4th day and 1st day among the four groups were significant different ( F=68.63, P<0.05). During the memory reproduction period, there were significant differences in active avoidance number and active avoidance time among the four groups ( F=8.17, 8.28, both P<0.05). The active avoidance numbers in 10 min and 15 min exposure groups((2.50±0.26) times, (2.33±0.06) times)were significantly lower than those in the control group ((8.33±3.72) times) (both P<0.05), and the active avoidance time ((6.25±0.40)s, (6.61±1.63)s) were significantly higher than those in the control group((3.69±1.41)s) (both P<0.05). The active avoidance numbers in 10 min and 15 min exposure groups were significantly lower than that in 5 min exposure group (both P<0.05). (3) The results of immunofluorescence staining showed that the numbers of SOX2-positive cells in the four groups were statistically significant ( F=5.33, P<0.05). The SOX2-positive cells in 15 min exposure group (4.33±1.12) was significantly lower than that in control group (7.67±1.52) ( P<0.05). The numbers of NeuN-positive cells in the four groups were significantly different ( F=11.06, P<0.05), and the NeuN-positive cells in the 10 min and 15 min exposure groups((105.67±8.50), (88.33±9.50)) were significantly lower than that in the control group (127.00±6.56) ( P<0.05). The NeuN-positive cells in 15 min exposure group were significantly lower than that in 5 min exposure group (110.67±8.32) ( P<0.05). (4) Western blot results showed that the relative expression of SOX2 and NeuN proteins in the four groups was statistically significant ( F=11.560, 7.035, both P<0.05). The relative expression of SOX2 and NeuN proteins in the 15 min exposure group were significantly lower than those in control group (both P<0.05). The relative expression of SOX2 protein in 15 min exposure group was significantly lower than that in 5 min exposure group ( P<0.05). Conclusion:Acute exposure to warm pressure charge explosion simulated gas can lead to anxiety-like behavior, learning and memory deficits in rats, and significantly reduce the protein expression levels of hippocampal dentate gyrus neural stem cells and mature neuronal marker molecules SOX2 and NeuN.

16.
Chinese Journal of Biologicals ; (12): 1522-1529, 2023.
Article in Chinese | WPRIM | ID: wpr-1005879

ABSTRACT

@#Parkinson's disease(PD)is the second common neurodegenerative disease that mostly occurs in middle-aged and elderly people. Currently,Levodopa is the main first-line treatment drug,but the long-term efficacy of patients is not good,and even side effects such as“on-off”phenomenon and orthostatic hypotension occur. Glucagon-like peptide-1receptor agonists(GLP-1RA)and analogues are endogenous peptide hormones that can be released into the blood and enter the central nervous system to exert neuroprotection by crossing the blood-brain barrier. Numerous studies have shown that GLP-1RA can improve movement disorders and restore dopaminergic neuron activity in PD. However,the mechanism of GLP-1RA is not yet fully clear. This paper summarized the mechanism of GLP-1RA and its analogues in improving PD movement disorders and restoring dopaminergic neuron activity,and reviewed the aspects of reducing neuroinflammation,inhibiting oxidative stress,inhibiting apoptosis,regulating mitochondrial morphology,increasing neuronal protrusions,enhancing autophagy,and regulating intestinal flora homeostasis,so as to provide new ideas for research of the mechanisms of PD and development of GLP-1RA-related new drugs.

17.
Journal of Acupuncture and Tuina Science ; (6): 239-246, 2023.
Article in Chinese | WPRIM | ID: wpr-996151

ABSTRACT

Depressive disorder seriously affects people's physical and mental health.Acupuncture is a safe and effective treatment for depression,yet,its mechanism is unclear.Therefore,acupuncture's action mechanism in intervening depression was summarized from several perspectives,including morphology and ultrastructure of neurons in depression-related brain areas,function and structure of glial cells,brain functional and structural connectivity,and neuroelectrophysiology.It's discovered that acupuncture can repair the morphological and ultrastructural damage of neurons in the hippocampus and prefrontal lobe,mitigate the functional and structural injuries of glial cells in the hippocampus and prefrontal lobe,strengthen functional connectivity and heal structural connection,and promote neuroelectrophysiological activities,which possibly are the principal mechanisms of how acupuncture works in intervening depressive disorder.

18.
Chinese Journal of Physical Medicine and Rehabilitation ; (12): 585-591, 2023.
Article in Chinese | WPRIM | ID: wpr-995222

ABSTRACT

Objective:To observe any effect of transplanting bone marrow mesenchymal stem cells (BMSCs) on microglia and neuron expression in newborn mice with hypoxic-ischemic brain damage (HIBD).Methods:Sixty 10-day-old C57BL/6 mice were randomly divided into a sham operation group, a hypoxic-ischemia group, a placebo group and a stem cell group, each of 15. The hypoxia-ischemia model was induced in the hypoxia-ischemia, placebo and stem cell groups, while the sham operation group was sutured after the neck incision. After successful modeling, the rats in the stem cell group were injected with BMSCs into the bregma while those in the placebo group received phosphate buffered saline. Seven days later, brain tissue was resected and its structure was observed using transmission electron microscopy. Immunofluorescence staining was performed to observe the expression of microglia and neurons in the left cerebral cortex.Results:Seven days after stem cell transplantation, the neuron morphology had improved and nerve fiber swelling was relieved in the stem cell group. The average expression of neurons was significantly greater in the stem cell group compared with the hypoxic-ischemia and placebo groups, while the expression of microglia was significantly lower.Conclusions:Bone marrow mesenchymal stem cells may induce neuron regeneration and reduce inflammatory response by inhibiting the expression of microglia, at least in neonatal rats modeling hypoxic-ischemic brain injury.

19.
Chinese Journal of Anesthesiology ; (12): 814-818, 2023.
Article in Chinese | WPRIM | ID: wpr-994264

ABSTRACT

Objective:To evaluate the role of long non-coding RNA (lncRNA) NORAD in ketamine-induced neurotoxicity in mouse hippocampal neurons and the relationship with endoplasmic reticulum stress.Methods:Primary mouse hippocampal neurons were isolated and cultured and then divided into 5 groups ( n=36 each) using a random number table method: control group (group C), ketamine group (group K), ketamine+ pcDNA3.1-NORAD plasmid group (group K+ NORAD), ketamine+ control plasmid group (group K+ NC), and ketamine+ NORAD+ tunicamycin group (group K+ NORAD+ TM). Group C was cultured with normal medium for 24 h. Group K was cultured with 40 μmol/L ketamine for 24 h. Group K+ NORAD was transfected with pcDNA3.1-NORAD overexpressing plasmid for 48 h, followed by treatment with 40 μmol/L ketamine for 24 h. Group K+ NC was transfected with pcDNA3.1 (+ ) plasmid for 48 h, followed by treatment with 40 μmol/L ketamine for 24 h. Group K+ NORAD+ TM was transfected with pcDNA3.1-NORAD overexpressing plasmid, 24 h later endoplasmic reticulum stress activator tunicamycin 1 μg/ml was added and the neurons were cultured for 24 h, and then ketamine 40 μmol/L was added and the neurons were cultured for another 24 h. Cell viability was detected by CCK-8 assay. The amount of lactate dehydrogenase (LDH) released was analyzed. Cell apoptosis was determined by TUNEL and flow cytometry methods. The NORAD expression was detected by real-time polymerase chain reaction. The expression of endoplasmic reticulum stress-related proteins protein kinase R-like ER kinase (PERK), phosphorylated PERK (p-PERK) and C/EBP homologous protein (CHOP) was detected by Western blot. Results:Compared with group C, the cell viability was significantly decreased, the amount of LDH released, percentage of apoptotic neurons and apoptosis rate were increased, NORAD expression was down-regulated, CHOP expression was up-regulated, and p-PERK/PERK was increased in group K ( P<0.05). Compared with group K, the cell viability was significantly increased, the amount of LDH released, percentage of apoptotic neurons and apoptosis rate were decreased, NORAD expression was up-regulated, CHOP expression was down-regulated, and p-PERK/PERK was decreased in group K+ NORAD ( P<0.05), and no significant change was found in the parameters mentioned above in group K+ NC ( P>0.05). Compared with group K+ NORAD, the cell viability was significantly decreased, the amount of LDH released, percentage of apoptotic neurons and apoptosis rate were increased, CHOP expression was up-regulated, and p-PERK/PERK was increased ( P<0.05), and no significant change was found in the NORAD expression in group K+ NORAD+ TM ( P>0.05). Conclusions:Over-expressed NORAD can alleviate ketamine-induced neurotoxicity in mouse hippocampal neurons via inhibition of the endoplasmic reticulum stress.

20.
Chinese Journal of Anesthesiology ; (12): 809-813, 2023.
Article in Chinese | WPRIM | ID: wpr-994263

ABSTRACT

Objective:To evaluate the role of activation of vesicular glutamate transporter 2 (VGLUT2) neurons in vagal nodose ganglion in dexmedetomidine-caused bradycardia in mice.Methods:Ninety-six SPF healthy male VGLUT2-cre mice, aged 10 weeks, weighing 20-25 g, were divided into 6 groups ( n=16 each) by the random number table method: normal saline control group (NS group), dexmedetomidine group (Dex group), viral control + chemogenetic control + dexmedetomidine group (eGFP-NS+ Dex group), viral transfection + chemogenetic control + dexmedetomidine group (hM4Di-NS+ Dex group), viral control + chemogenetic inhibition + dexmedetomidine group (eGFP-CNO+ Dex group) and viral transfection + chemogenetic inhibition + dexmedetomidine group (hM4Di-CNO+ Dex group). Dexmedetomidine 100 μg/kg was intraperitoneally injected in Dex group. The equal volume of normal saline was intraperitoneally injected in NS group. AAV2/9-hSyn-DIO-hM4Di-eGFP was injected in the right nodose ganglion in hM4Di-NS+ Dex group and hM4Di-CNO+ Dex group, and AAV2/9-hSyn-DIO-eGFP was injected in the right nodose ganglion in eGFP-NS+ Dex group and eGFP-CNO+ Dex group, allowing the virus expression for 21 days. On the 22nd day after virus injection, clozapine-n-oxide (CNO) 5 mg/kg was intraperitoneally injected in hM4Di-CNO+ Dex group and eGFP-CNO+ Dex group, the equal volume of normal saline was intraperitoneally injected in hM4Di-NS+ Dex group and eGFP-NS+ Dex group, 1 h later the efficacy of CNO reached the peak, and then dexmedetomidine 100 μg/kg was intraperitoneally injected. The respiratory rate, heart rate, SpO 2 and discharge frequency of the right vagal nodose ganglion were synchronously measured by multi-channel electrophysiology in vivo. The expression of phosphorylated extracellular signal-regulated kinase (pERK) and VGLUT2 and co-expression of pERK and VGLUT2 in the right vagal nodose ganglion were detected by immunofluorescence assay. Results:Compared with NS group, the percentage of heart rate variation and neuron firing frequency after administration were significantly increased, and pERK expression was up-regulated in the other five groups ( P<0.05). Compared with Dex group, the percentage of heart rate variation and neuron firing frequency after administration were significantly decreased, and pERK expression was down-regulated in hM4Di-CNO+ Dex group, and no significant change was found in the parameters mentioned above in hM4Di-NS+ Dex group, eGFP-NS+ Dex group and eGFP-CNO+ Dex group ( P>0.05). Compared with hM4Di-CNO+ Dex group, the percentage of heart rate variation and neuron firing frequency after administration were significantly increased, and pERK expression was up-regulated in eGFP-CNO+ Dex group ( P<0.05). There was no significant difference in the percentage of respiratory variation and SpO 2 among the six groups ( P>0.05). The expression of VGLUT2-positive neurons was abundant in nodose ganglia, and the co-expression rate of pERK and VGLUT2 was nearly 90%. The co-expression rate of pERK and VGLUT2 decreased to about 30% after inhibition of VGLUT2 neurons in ganglion. Conclusions:The mechanism by which dexmedetomidine causes bradycardia is associated with activation of VGLUT2 neurons in vagal nodose ganglia in mice.

SELECTION OF CITATIONS
SEARCH DETAIL